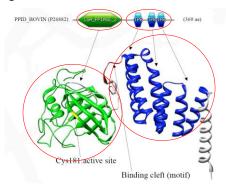
PROSITE/HAMAP: Sequence Similarity Search With Methods Based on Multiple Sequence Alignments (Patterns and Profiles)

Christian Sigrist

SIB Swiss Institute of Bioinformatics

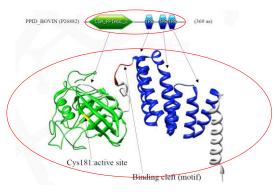

November 14

Protein Bioinformatics: Sequence-Structure-Function

2018 Base

Conserved regions in proteins can be classified into 5 different groups:

Domains: specific combination of secondary structures organized into a characteristic three dimensional structure or fold corresponding to a functional unit.

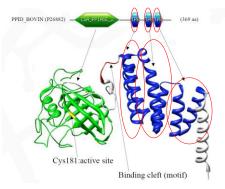

PPID family: 1 CSA_PPIASE (cyclophilin-type peptydil-prolyl cis-trans isomerase) domain + 3 TPR repeats (tetratrico peptide repeat).

November 14

Protein Bioinformatics: Sequence-Structure-Function

Conserved regions in proteins can be classified into 5 different groups:

Families: groups of proteins that have the same domain arrangement or that are conserved along the whole sequence.

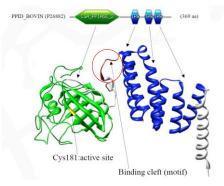


PPID family: 1 CSA_PPIASE (cyclophilin-type peptydil-prolyl cis-trans isomerase) domain + 3 TPR repeats (tetratrico peptide repeat).

November 14

Conserved regions in proteins can be classified into 5 different groups:

Repeats: structural units always found in two or more copies that assemble in a specific fold. Assemblies of repeats might also be thought of as domains.

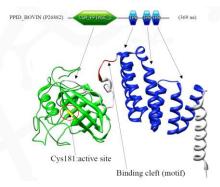

PPID family: 1 CSA_PPIASE (cyclophilin-type peptydil-prolyl cis-trans isomerase) domain + 3 TPR repeats (tetratrico peptide repeat).

November 14

Protein Bioinformatics: Sequence-Structure-Function

Conserved regions in proteins can be classified into 5 different groups:

Motifs: region containing conserved active- or binding-residues or short conserved regions present outside domains that may adopt folded conformation only in association with their binding ligands.



PPID family: 1 CSA_PPIASE (cyclophilin-type peptydil-prolyl cis-trans isomerase) domain + 3 TPR repeats (tetratrico peptide repeat).

November 14

Conserved regions in proteins can be classified into 5 different groups:

 Sites: functional residues (active sites, disulfide bridges, posttranslationally modified residues)

PPID family: 1 CSA_PPIASE (cyclophilin-type peptydil-prolyl cis-trans isomerase) domain + 3 TPR repeats (tetratrico peptide repeat).

November 14

Protein Bioinformatics: Sequence-Structure-Function

Sequence identity and similarity

Identity

Proportion of pairs of **identical** residues between two aligned sequences.

Generally expressed as a percentage.

This value strongly depends on how the two sequences are aligned.

Similarity

Proportion of pairs of **similar** residues between two aligned sequences.

If two residues are similar is determined by a substitution matrix.

So this value depends strongly on the substitution matrix used.

Sequence similarity searches can identify « homologous » proteins or genes by detecting excess similarity, i.e. statistically significant similarity that reflects common ancestry. Significant similarity is strong evidence that two sequences are related by evolutionary changes from a common ancestral sequence.

Sequence homology

Sequence similarity is the observation, homology is the conclusion.

Homology

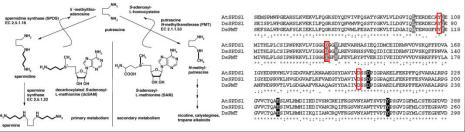
Two sequences are homologous if and only if they have a **common ancestor**. There is no percentage of homology! (It's either yes or no)

- Homologous sequences do not necessarily serve the same function...
- ... Nor are they always highly similar: structure may be conserved while sequence is not.
- Orthologs are homologous sequences that are the result of a speciation event.
- **Paralogs** are homologous sequences that are the result of a **duplication event**.
- Xenologs are homologous sequences that are the result of a horizontal (or lateral) gene transfer event.

Similarity search: The quest of the Grail

Sequence similarity searching is the most widely used, and most valuable strategy for characterizing newly determined sequences.

How to find similarity between sequences?


- There are many traps:
 - Does the similarity reflect an homology or does it result from convergence?
 - Is the alignment the right one?
 - · Is it an ortholog or only a paralog?
 - · Is the function conserved?
 - ..

Be careful!

Sequence Homology vs Functional Conservation

- Homology often provides vital evidence in the prediction of molecular function, but does not necessarily mean that two homologous proteins possess common functions. It only means that they share a common ancestor.
- Ex: GATA zinc fingers, trypsin protease and haptoglobin, spermidine synthase (SPDS) and putrescine N-methyltransferase (PMT)
- PMT sequences are related more closely to those of plant SPDS than to any methyltransferases.

November 14

Protein Bioinformatics: Sequence-Structure-Function

BLAST

A popular way to identify similarities between proteins is to perform a pairwise alignment (Smith-Watermann, Needlemann-Wunsch, BLAST, ...).

Check which part of the query sequence the BLAST retrieves!

Prothrombin only matches the trypsin domain. The N-ter is completely different.

Graphical overview of the alignments

to resubmit your query after masking regions matching PROSITE profiles or Pfam MERE

Similarity Identification with Pairwise Alignments

Normally, when the identity is higher than 40% this method gives good results.

>SCN2A_HUMAN_IQ repeat EEVSAIIIQRAYRRYLLKQKVKKVSSIYKK

sp Q9UQD0 Sodium channel protein type 8 subunit alpha (Sodium channel protein 1980 && SCN8&_HUHAN type VIII subunit alpha) (Voltage-gated sodium channel align subunit alpha Nav1.6) [SCN8A] [Homo sapiens (Human)]

Score = 36.3 bits (78), Expect = 0.025 Identities = 10/13 (76%), Positives = 12/13 (92%)

Query: 1 EEVSAIIIQRAYR 13 EEVSA++ QRAYR Sbjct: 1895 EEVSAVVLQRAYR 1907

Only the N-ter of the query sequence matches and with a low score!

 Score = 32.7 bits (67), Expect = 0.13, Method: Composition-based stats.

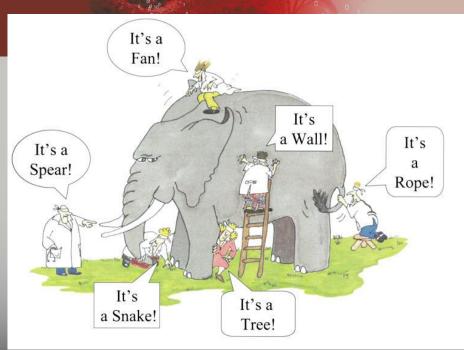
 Identities = 14/28 (50%), Positives = 21/28 (75%), Gaps = 2/28 (7%)

 Query 1
 EEVSAILIQRAYRRYLLKQKV--KKVS5 26 EEVSAH++QRAYR +L ++ KK +5

 Sbict 1895 EEVSAVLARGRHARRFICKKTTS 1922

Even if you manually adjust the best substitution matrix!

Pairwise Sequence Alignments vs MSAs


SCN2A_HS : BEVSATITORAYRYLLKÖKVKKVSGTYKK : 30 SCN8A_HS : BEVSAVVLORAYRCHLARRGFICKKOTSNK : 30 EEVSA666QRAYR L 4 3 K

Another weakness of the pairwise alignment is that no distinction is made between an amino acid at a crucial position (like an active site) and an amino acid with no critical role.

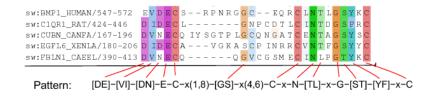
					20			
SCN2A_HS	:	EEVSAII	IQRAY	RYLL	QKVK	KVSSIYKK	:	30
SCN2A_RN	:	EEVSAIV	IQRAYI	RYLL	QKVK	KVSSIYKK	:	30
SCN3A_HS	:	EEVSAAI	IQRNF	CYLL	QRLK	NISSNYNK	:	30
SCN8A_HS	:					CKKTTSNK	:	30
SCN8A_MM	:	EEVSAVV	LQRAYI	GHLA	RGFI	CRKITSNK	:	30
IQGA1_HS_1	:	NEGLITR	LQARCI	GYLV	QEFR	SRMNFLKK	:	30
IQGA1_HS_2	:	QIPAITC	IQSQW	GYKQI	KAYQ	DRLAYLRS	:	30
IQGA1_HS_3	:	HKDEVVK	IQSLA	MHQA	KRYR	DRLQYFRD	:	30
IQGA1_HS_4	:	HINDIIK	IQAFI	ANKA	DDYK	TLINAEDP	:	30
IQGA1_MM_1	:	NEGLITK	LQACC	GYLV	QEFR	SRMNFLKK	:	30

A multiple sequence alignment (MSA) gives a more general view of a conserved region by providing a better picture of the most conserved residues, which are usually essential for the protein function. It can help to identify subfamilies. An MSA contains more information than a pairwise alignment and several tools have been developed to extract this information.

November 14

Extracting Information from MSAs

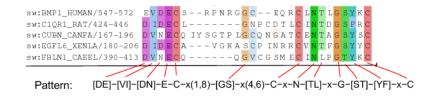
Several models based on multiple sequence alignment have been developed in order to identify conserved regions (patterns, PSSMs, fingerprints, generalized profiles/HMMs). A search performed with such models is generally more sensitive than a pairwise alignment and can help identify very remote similarity (less than 20% of identity). They also offer a better alignment of important residues:


- Consensus: patterns / regular expressions
- Profile: weight matrices

Patterns

PROSITE patterns

- PROSITE patterns use a special syntax to describe the consensus of all the sequences present in the multiple alignment using a single expression.
- Used to describe small functional regions:
 - Enzyme catalytic sites;
 - Prosthetic group attachment sites (heme, PLP, biotin, etc.);
 - Amino acids involved in binding a metal ion;
 - Cysteines involved in disulfide bonds;
 - Regions involved in binding a molecule (ATP, DNA, *etc.*) or a protein.
- Excellent tool to annotate active sites in combination with profiles (ProRules).


How to build a PROSITE pattern

- Collect sequences known to contain the signature and produce a multiple sequence alignment of the region of interest.
- Build a pattern.
 - By hand
 - You can use automatic methods (e.g.

http://web.expasy.org/pratt/) or a sequence logo to guide you

How to build a PROSITE pattern

Example using a sequence logo (http://weblogo.berkeley.edu/logo.cgi):

November 14

2018 Basel

PROSITE patterns: the full syntax

- aa are represented by a single letter code (e.g. S)
- each position is separated by a dash '-' (e.g. S-P-R)
- 'X' represents any aa (e.g. S-X-R)
- '[]'group of aa accepted for a position (e.g. [ST]-X-[RK])
- '{}' group of aa not accepted for a position (e.g. [ST]-{PG}-[RK])
- > '()' repetitions

Examples:

x(3) corresponds to x-x-x

x(2,4) corresponds to x-x or x-x-x or x-x-x-x

A(3) corresponds to A-A-A

Note: You can only use a range with 'x', i.e. A(2,4) is not a valid pattern element.

- '<'anchor at the N-term</p>
- '>'anchor at the C-term

PROSITE patterns syntax example

- Pattern: <M-X(0,1)-[ST](2)-X-{V}</p>
- Regexp: ^M.?[ST]{2}.[^V]
- Text:
 - The sequence must start with a methionine,
 - followed by any aa or nothing,
 - followed by a serine or threonine twice,
 - followed by any aa,
 - followed by any aa except a valine.

Tricks to build a PROSITE pattern

 sw:EMP1_HUMAN/547-572
 EVDEC
 S--RPNRGGC--EQRCLNTLGSYKC

 sw:ClQR1_RAT/424-446
 DIDECL----GNPCDTLCINTDGSFRC

 sw:CUN_CANFA/167-196
 DVNECQIYSGTPLGCQNGATCENTAGSYSC

 sw:EGFL6_XENLA/180-206
 DIDECA--VGKASCPINRCVNTFGSYC

 sw:FBLN1_CAEEL/390-413
 DVNECQ----QGVCGSMECINECGINCGS

Pattern: [DE]-[VI]-[DN]-E-C-x(1,8)-[GS]-x(4,6)-C-x-N-[TL]-x-G-[ST]-[YF]-x-C

- For the construction of the pattern, it is useful to consider residues and regions proved/thought to be important to the biological function of that group of proteins (e.g. enzyme catalytic sites, etc.).
- A first pattern is built from the MSA of the most conserved residues. It is used to scan the database.
- If it picks up too many false positives, it is modified to make it more stringent.
- The difficulty resides in achieving a pattern which does not pick up too many false positives yet does not miss too many sequences (false negatives).
- In some cases this result can not be achieved and an optimal sequence pattern can not be built.

How to Estimate the Quality of a Pattern

- We can not estimate the quality of a match with a pattern: <u>PATTERNS don't produce a score, they match or not!</u>
- But we can estimate the quality of the pattern.
- Two parameters can be computed to estimate the quality of a pattern: precision and recall.

False positives = known false hits.

- False negatives = known missed hits.
- Precision = true hits/(true hits + false positives).

Precision = $1 \Rightarrow$ no false positive.

Precision = $0.8 \Rightarrow 20\%$ false positives.

Recall = true hits/(true hits + false negatives).

Recall = $1 \Rightarrow$ No missed hits.

Recall =0.8 \Rightarrow 20% missed hits.

To obtain these measures we require a well annotated protein databases (PROSITE uses UniProtKB/Swiss-Prot).

PROSITE patterns: example of a pattern entry

Home ScanProsite ProRule Documents Downloads Links Funding

	General inform	ation about the entry			
Entry name [info]	USP_1				
Accession [info]	PS00972				
Entry type [info]	PATTERN				
Date [info]	JUN-1994 (CREATED); D	EC-2013 (DATA UPDATE); APR-	2015 (INFO UPDATE).		
PROSITE Doc. [info]	PDOC00750				
Associated ProRule [info]	PRU10092	Active site			
	Name and chara	cterization of the entry	1		
Description [info]	Ubiquitin specific protease	(USP) domain signature 1.			
Pattern [info]	G-[LIVHFY]-x(1,3)-[AGCY [LIVH0F]-[QF].	T]-[NASHQO]-x+C+[FTHC]-[LIVHFC	A] - [NSTAD] - [SACV] -x-		
	Numeric	cal results (info)			
Numerical results for		ase 2015_06 which contains 548'	'586 sequence entries.	Number of true posi	411.00
Total number of hits			es	Number of true posi	tive
Total number of hits Number of true positive hits		ase 2015_06 which contains 548	es es		tive
Total number of hits Number of true positive hits Number of 'unknown' hits		282 in 282 different sequence 282 in 282 different sequence 282 in 282 different sequence	es es		tive
Total number of hits Number of true positive hits Number of 'unknown' hits Number of false positive hits		2015_06 which contains 548' 282 in 282 different sequenc 282 in 282 different sequenc 0	es es Number of	false positives	tive
Total number of hits Number of true positive hits Number of 'unknown' hits Number of false positive hits Number of false negative sequences		ase 2015_06 which contains 548' 282 in 282 different sequenc 282 in 282 different sequenc 0 0	es es Number of		tive
Total number of hits Number of true positive hits Number of lake positive hits Number of false positive hits Number of false negative sequences Number of 'partial' sequences	r UniProtKE/Swiss-Prot rele	ase 2015_06 which contains 548 282 in 282 different sequenc 282 in 282 different sequenc 0 0 28	es es Number of	false positives	tive
Total number of hits Number of true positive hits Number of fulse positive hits Number of false negative sequences Number of partial sequences Precision (true positives / (true positive	r UniProtKB/Swiss-Prot role	asy 2015_06 which contains 548 282 in 282 different sequenc 282 in 282 different sequenc 0 0 0 1	es es Number of	false positives	tive
Total number of hits Number of true positive hits Number of fulse positive hits Number of false negative sequences Number of partial sequences Precision (true positives / (true positive	r UniProtKB/Swiss-Prot role es + fatse positives)) fatse negatives))	asy 2015_06 which cortains 548' 282 in 282 different sequenc 282 in 382 different sequenc 0 0 1 1 1 400.00 %	es es Number of	false positives	tiv∈
Total number of hits Namber of true positive hits Namber of truisnover hits Namber of dise positive hits Namber of lipartial sequences Precision (true positives / (true positives + Recall (true positives / (true positives +	r UniProtKB/Swiss-Prot role es + fatse positives)) fatse negatives))	ans 2015_06 which contains 548 242 in 242 different sequence 242 in 242 different sequence 0 0 1 1 100000 % 0000 % 00000 %	es es Number of	false positives	tive
Total number of hits Namber of true positive hits Namber of rulenover hits Namber of dise positive hits Namber of gene negative sequences Namber of gene negative sequences Precision (true positives / (true positives + Recall true positives / (true positives - Taxonomic range (info)	UniProtKE/Swiss-Prot rele es = false positives)) false negatives)) Eukaryotes, Eukaryote (vin	ans 2015_06 which contains 548 242 in 242 different sequence 242 in 242 different sequence 0 0 1 1 100000 % 0000 % 00000 %	es es Number of	false positives	tive
Numerical results for Total number of hits Number of two souths hits Number of dise positive hits Number of dise positive hits Number of dise positive sequences Number of operated sequences Precision (true positives / (true positive Recal thus positives / (true positive Recal thus positives / (true positive Taisonomic range [rife) Maximum number of repetitions [rife) Site [rife]	UniProtKE/Swiss-Prot rele es = false positives)) false negatives)) Eukaryotes, Eukaryote (vin	ans 2015_06 which contains 548 242 in 242 different sequence 242 in 242 different sequence 0 0 1 1 100000 % 0000 % 00000 %	es es Number of	false positives	tive

Limitations of PROSITE pattern

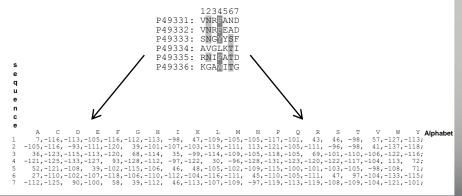
 sw:EMP1_HUMAN/547-572
 EVDEC
 S - RPNRGGC - EQRCLNTLGSYKC

 sw:ClQR1_RAT/424-446
 DIDECL - - - - GNPCDTLCINTDGSFRC

 sw:CUEN_CANFA/167-196
 DVNECQIYSGTPLGCQNGATCENTAGSYSC

 sw:EGFL6_XENLA/180-206
 DIDECA - - VGKASCPINRRCVNTFGSYYC

 sw:FBLN1_CAEEL/390-413
 DVNECQ - - - - QGVCGSMECIN LPGTYKC


Pattern: [DE]-[VI]-[DN]-E-C-x(1,8)-[GS]-x(4,6)-C-x-N-[TL]-x-G-[ST]-[YF]-x-C

- OK to detect and annotate very conserved regions, but poor gap models
- residues at one position are considered equivalent in their frequencies
- Patterns are not predictive: if a symbol is not present at one position, this will exclude variants that have not yet been observed from being detected
- no score of the match is produced (you match or not)

Position Specific Scoring Matrix (PSSM)

Position Specific Scoring Matrix (PSSM)

A PSSM or a profile is based on the frequencies of each residue at a specific position in an MSA. The MSA is converted into a matrix where a **score** is given to each amino acid at each position of the MSA according to the observed frequency (positive scores for expected amino acids and negative scores for unexpected ones).

Construction of a PSSM (1)

First step: weight sequences.

- When constructing a PSSM from an MSA it is a mistake to give all sequence of the alignment the same weight.
- A large set of closely related sequences carries little more information than a single member, but it will drastically influence the score of each amino acid at each position and decrease the influence of divergent sequences.
- To counteract this effect it is important to weight sequences, with those having many close relatives receiving smaller weight.

Construction of a PSSM: Weight Sequences (1)

1	2	3	4	5	6	7	
A	S	т	A	M	P	v	₩=0.25
A	т	s	L	м	v	т	₩=0.25
S	S	S	L	м	L	т	₩=0.25
A	т	Р	A	м	S	S	₩=0.25
A	т	A	L	L	S	A	₩=0.125
A	т	A	L	L	S	A	₩=0.125

To compensate for this sampling bias, we can use sequence weighting algorithms, e.g.:

- based on phylogenetic tree: Gerstein, Sonnhammer and Chotia (GSC)
- based on Voronoï algorithm: Sibbald and Argos

Construction of a PSSM (2)

2nd step: count the number of occurrence of the different amino acids (or bases) at each position of the alignment

1	2	3	4	5	6	7
A	S	т	A	м	P	v
A	т	S	L	м	v	т
S	S	S	L	м	L	т
A	т	P	A	м	S	S
A	т	A	L	L	S	A
1	2	3	4	5	6	7
4a	3t	2s	31	4m	2s	1v
1s	2s	1t	2a	11	11	2t
		1a			1 v	1s
		1p			1p	1a

Construction of a PSSM (3)

3rd step: derivation of the preliminary frequency matrix

1	2	3	4	5	6	7_
4a	3t	2s	31	4m	2s	1v
1s	2s	1t	2a	11	11	2t
		1a			1 v	1s
		1p			1p	1a
1	2	3	4	5	6	7
0.8	0	0.2	0.4	0	0	0.2
0	0	0	0.6	0.2	0.2	0
0	0	0	0	0.8	0	0
0	0	0	0	0	0.2	0.2
0	0	0.2	0	0	0.2	0
0.2	0.4	0.4	0	0	0.4	0.2
0	0.6	0.2	0	0	0	0.4

A L M V P S

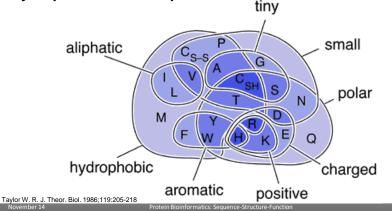
Construction of a PSSM (4)

4th step: correction of the sample bias.

- An MSA represent a sample of all proteins that contain such a conserved region, thus a **sample bias** can be observed: not all possibilities are represented in the MSA: some observed frequencies are equal 0 and thus will exclude the corresponding amino acid at this position (like in patterns).
- To circumvent this problem, one possibility is to add a small number to all observed frequencies, pseudo-counts to avoid null frequencies.
- A more elegant way is to modulate the pseudo-count for conservative substitutions using substitution matrices or dirichlet mixtures.
- The number of sequences in the MSA is also important. If there are a lot of sequences there is less sample bias and thus pseudo-count are less important.

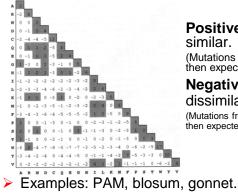
(Usually logarithms of 'corrected' frequencies are used so as to speed up computation time).

November 14


Pseudo-counts

For example we add 0.1 to all counts of the previous matrix and re-normalize to obtain frequencies:

	1	2	3	4	5	6	7
A	0.300	0.033	0.100	0.166	0.033	0.033	0.100
С	0.033	0.033	0.033	0.033	0.033	0.033	0.033
D	0.033	0.033	0.033	0.033	0.033	0.033	0.033
E	0.033	0.033	0.033	0.033	0.033	0.033	0.033
F	0.033	0.033	0.033	0.033	0.033	0.033	0.033
G	0.033	0.033	0.033	0.033	0.033	0.033	0.033
н	0.033	0.033	0.033	0.033	0.033	0.033	0.033
1	0.033	0.033	0.033	0.033	0.033	0.033	0.033
K	0.033	0.033	0.033	0.033	0.033	0.033	0.033
L	0.033	0.033	0.033	0.233	0.100	0.100	0.033
M	0.033	0.033	0.033	0.033	0.300	0.033	0.033
N	0.033	0.033	0.033	0.033	0.033	0.033	0.033
P	0.033	0.033	0.100	0.033	0.033	0.100	0.033
Q	0.033	0.033	0.033	0.033	0.033	0.033	0.033
R	0.033	0.033	0.033	0.033	0.033	0.033	0.033
S	0.100	0.166	0.166	0.033	0.033	0.166	0.100
Т	0.033	0.233	0.100	0.033	0.033	0.033	0.166
V	0.033	0.033	0.033	0.033	0.033	0.100	0.100
W	0.033	0.033	0.033	0.033	0.033	0.033	0.033
Y	0.033	0.033	0.033	0.033	0.033	0.033	0.033


Amino acid classification

- Amino acid side chains vary in size, shape, charge, hydrogenbinding capacity and chemical reactivity.
- The side-chain can make an amino acid a weak acid or a weak base, and a hydrophile if the side-chain is polar or a hydrophobe if it is nonpolar.

Substitution Matrices

- "All amino acids are equal, but some amino acids are more equal than others." Inspired from Georges Orwell
- In proteins some mismatches are more acceptable than others.
- Substitution matrices give a score for each substitution of one amino acid by another. These sets of numbers describe the propensities of exchanging one amino acid for another.

Positive score: the amino acid are similar.

(Mutations from one aa into the other occur more often then expected by chance during evolution).

Negative score: the amino acids are dissimilar.

(Mutations from one amino acids into the other occur less often then expected by chance during evolution).

Search a Database With a PSSM

The sequence (MCFVNRFYSFCMP) is aligned to the PSSM:

Μ А К v 1 12,-41,-20, 5,-25,-42,-18,-18, 33,-12,-12,-19,-41, 42, 9, 2. 9, (16)-61,-11; N -23, -54, -5, -24, -37, -19, -45, -3, 7, -35, -38, (59) - 41, -12, -42, 10, 65, -17, -68, -15;-13, -62, -14, 4, -53, 78, -36, -65, -15, -64, -49, -14, -48, 9, (5, -10, -11, -63, -61, -42;R F 4 -36, -68, -63, -36, (60) -63, -38, -14, -47, 3, -21, -52, -53, -34, -58, -39, -45, -26, 138, 36; Y 5 -22, -60, -54, -24, 6,-43, 0, 30, 13, 0,-22,-27,-59, 55, -9,-<mark>38,</mark>-11, 37,-57, <mark>(12</mark> 6 -35, -46, -18, 14, -9, -51, -12, -19, 34, -39, -28, 36, -45, 44, -9, (-3), 41, -27, -24,-33, -58, 37, -6, -10, -39, -21, 61, -23, -1, -28, -6, -58, -17, -54, -20, -9, 14, -12, 11;

- Searching algorithm: sliding windows. At each position of the sliding window the score is obtained by summing the score of all columns
- Best score: 16+59+5+60+12-3-16=133

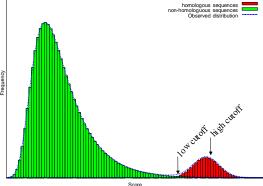
November 14

Search a Database With a PSSM

The sequence (MCFVNRFYSFCMP) is aligned to the PSSM:

Mancut Of Μ v 12,-41,-20, 5,-25 N -23,-54, -5,-24,-37, R -13, -62, -14, F -36, -68, -63, -36, -22,-60,-54,-24, -35.-46.-18. -33, -58, 37 -6.-58,-17,-54,-20, Nhere

Searching algorithm: sliding windows. At each position of the sliding window the score is obtained by summing the score of all columns


```
Best score: 16+59+5+60+12-3-16=133
```

Interpretation of the score

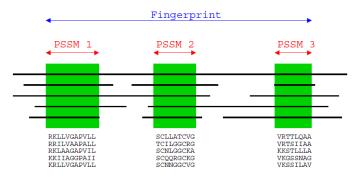
- How do I interpret the score produced by a profile? Which is the lowest score I consider to produce a true match?
- Only biological arguments tell you if a match is true or not.
- However, a statistical analysis can help us decide if a match is statistically significant (true positive) or not (false positive).

Scores follow an EVD distribution

- The score distribution of a profile on unrelated sequences is approximated by an Extreme Value Distribution (EVD) (green bars).
- ➤ This property permits to calculate the E-value: the number of matches that we expect to occur by chance with a score ≥ a given cut off.

Advantages and limitations of PSSM

Advantages:


- The score produced permits to estimate the quality of the match produced.
- Can be used to model short motifs.
- The method is relatively fast and simple to implement.

Limitations:

Insertions and deletions (Indels) are forbidden: long regions cannot be described.

PSSM: Fingerprints

To overcome the gap limitation of PSSMs (missing gap model), two or more PSSMs can be used to describe long regions. The combination of various PSSMs is called fingerprints.

The PRINTS database is a collection of annotated fingerprints.

Generalized profiles

	alpha-helix	beta-strand	beta-strand	beta-strand	alpha-helix
	10 20	30 . 90 .	50 60	70 80	90 100
SH2-7/1-77	WFHGELER GESERLLMM-	- EVQEGTFLIRKSDAMYPGC	YTL SHSENSV	R F K E I I I S K MQ R M	SVCAE- SK HILLNEIVWVY
SH2-19/1-78	WYYGFIKR NEAEGLLMN-	- DKEDGAYLVRSSRS- DVGE	ISLSVRFDD	EI HHFRICTLTKG	VIMKAN LGDN FSDLPQLVYHY
SH2-14/1-75	WIDGKILR KEAEKYLSE-	GKDGTFLVRDSD KPGE	ISLALHEEK	MITPFILHRNDDD	NYYRGEGET FPAISELIMYY
SH2-12/1-92	FGRMSR · · · · · QQAEDI FRAG	IGNKPGIFLVRESES- TPAD	GMSEYALAVRHNEP EQNS	SRYGK <mark>VIHHKIFRVP</mark> DYYDI	OYFLKEEAK LQHLGQLIEYY
SH2-18/1-83	WFHGY ITGY GNEAEYQLVP-	GKKGDFLVRDSSR-QEDD	FTLSVVFNDTF	NGEQIKHYHINFLAAF	GYYVILNIE FDT LADLISYH
SH2-8/1-80	WILAFISR TEVPLLLLEI	- SPARGIYLVRKSS TLGD	YTVTVRDDG	RVKHFQICFKEDLKTF	GYIIEGPT FCTINDLIDHO
SH2-6/1-81	WY FGQ ITG EAEELIQKP	- EGRNG (FLVRTSR TDGE	FALSVHNDGV L	THP DRKHFRI EANDG	CYFIAEESS HCSFKQLIGLY
SH2-5/1-78	WYHPAISR STREQULLK-				
SH2-15/1-76	WIHSAITR DAVRMLRD-				
SH2-20/1-74	YYHRFLYR EEAYESLLG.	PGDFLLRESIS- KPLE	ISLSVMDDG	KV I WY R KC EV DNR	TYTRFGRKK FRTLOYLIGHF
SH2-1/1-83	WGHGN I SG DDA EEILQDP				
SH2-10/1-74	LFHGFANRTAIAEARLON-	TMY G 3Y LVR ESE SPGE	IALSLWHCS	SVKW- RITNENG	NLVIYS-LFFSTLSQFVYHY
SH2-2/1-86	WFWGKVSGETKGNSKAETQLND-	- GGRDGSFIVRDSAT- RPGD	· · · · IAFSLRTDGD · · · ·	RGEEVNHCKV PMDNG	KYYVEMNDR FNTIGELIEVY
SH2-17/1-77	WFMKFITWKEAEECLMDR	- EQRDG FVIRESSO- HPNA	FSI SVR EFG	SVGHIVVEYDNRG	IIIITDNTVNCHLGELIHFY
SH2-11/1-80	FFAGDLGK LASYRLAT-	- ARPPGFFLVRLSDN- STGD	ITV SVV DWGQ #	RNPKVKQYLILEECNG	VFGIGREY FDEPOALVHGY
SH2-4/1-74	LYSGKVST AYVEMLLKT-	TGIFLVRESDS- SEGS	FTL SVRYQ S	EVQHYIIDKQDGG	YMLDRSRRHGSLLEIVNHY
SH2-3/1-74	WFAGDITR ELVENSUML-	EKTGOFLLROSE APGS	YVLYWLDIS	VVKHYLIFNEONC	YYMTTGIR FSSLPLLVMDY
SH2-16/1-80	WFHGE ISROGPCIEDKPPEAEDRLLP-	NKQGIYLVRKRET- EEGQ	YTLTLVTKN	NH SHVIIGFSETG	Y FCTGK1 LODLVSHY
SH2-9/1-77	WY I PALDR KQAEELLLYS	- GQ HQ GO LIVEPSEH- EQ GH	FALSVRSGSP	RVKHIVICSDEHR	- IRNGGET FSSLEELVEVD
SH2-13/1-81	WFSGQVTR QDAATLLQS-	- GGEEGSFLVRESDS- HQGV	FSLSVLEQRD S	SKKSKVHHILVO SAED	OVLISERKK FDGLFDLITHY
					L

Protein Bioinformatics: Sequence-Structure-Function

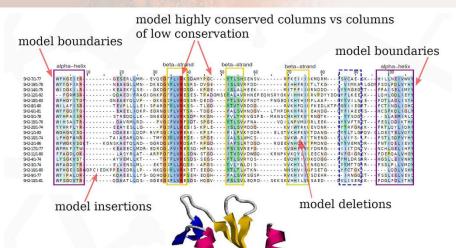
model highly conserved columns vs columns of low conservation

13 20 30 50<		alpha-helix		beta-strand	beta-strand	beta-strand	alpha-helix
SP33178 WYYOF IK FEASELLIME - DECOMINY SISS DVGE ISLBYFED FFFIII AND COMING VIII ALL COMING SD UPD LYME SP32475 FGM 53 -OGAD FAG OK IK SS DVGE ISLB LIFES MITTER INTERIONAL COMING FGM 53 SP32475 FGM 53 -OGAD FAG OK IK SS DVGE ISLB LIFES MITTER INTERIONAL COMING FGM 53 SP32475 FGM 53 -OGAD FAG OK IK SS DVGE ISLB LIFES MITTER INTERIONAL COMING FGM 53 SP32475 FGM 53 -OGAD FAG OK IK SS DVGE ISLB LIFES MITTER INTERIONAL COMING FGM 53 SP32475 FGM 53 -OGAD FAG OK IK SS DVGE ISLB LIFES MITTER INTERIONAL COMING FGM 54 SP32481 W FGO TG EX EVEL OK IK SS DVGE FGM 54 MITTER INTERIONAL COMING FGM 54 SP32481 W FGO TG EX EVEL OK IK SS DVGE FGM 54 MITTER INTERIONAL COMING FGM 54 SP3247 W FGO TG EX EVEL OK IK SS DVGE FGM 54 MITTER INTERIONAL COMING FGM 54 SP32481 W FGO TG<		10	20 30	. 10	50 60	70 80	100
Signaps Signaps <t< td=""><td>SH2-7/1-77</td><td>WFHGEIER</td><td> GESERLLMM EVO</td><td>EGTELIRKSDAMY</td><td>PGC YTLSHSENSV</td><td> R F K E I I S KMQ RM</td><td>SVCAE- SK HILLNETVWVY</td></t<>	SH2-7/1-77	WFHGEIER	GESERLLMM EVO	EGTELIRKSDAMY	PGC YTLSHSENSV	R F K E I I S KMQ RM	SVCAE- SK HILLNETVWVY
9x32x8 + FGM158 - OQAGDIRAGIO FRAGIO KAND FLVE ESES TRADOMS TALLAVANUE PEONS ANG VENKUE AVENT VENKUE AVENUE AVENU	SH2-19/1-78	WYYGFIKR	NEAEGLLMN DKI	EDGAYLVRSSRS-D	VGE ISLSVRFDD	EI HHFRICTLTKG	- VIMKAN LODN FSDLPOLVYHY
SP33588 WHRUY TO OREARYO, VY OKKO PLV DDSR. OEDD. PTEXYV PUTC. PNDC INT ALAL. SYV IL NJ PTEX ALAL. SYV IL NJ	SH2-14/1-75	WIDGKILR	K EA EKY L SE GI	OGTFLVRDSD K	PGE ISLALHEEK	MITPFIIHRNDDD	NYYRGEGET FPAISELIMYY
Spandow WILAFISK TEVPLULUEISSAND TLV CS-TLOD MTVTVNDOD VENTONO	SH2-12/1-92	FGRM SR	QQAEDI FRAGIGNI	POFFLVRESES.T	PADGMSEYALAVRHNEPEQN	ISRYGKVIHHKIFRVPDYYDD	OY FLK EEAK LQ HLGQ LI EYY
SPG2026 W F 00 T FO E & E & E & D & O & F. V T & A. T D & E. T & A. S & V H D D V C T H D & K H M & I & A D D - V Y I & E & S & H C & S & C & L & S & S & S & S & S & S & S & S & S	SH2-18/1-83	WFHGY ITGY	GN EA EYO LVP GI	KGOFLVRDSSR-O	EDD FTLSVVFNDT	PNGEOIKHYHINFLAAF	GYYVILNIE FDT LADLISYH
902.07 WYHRA 158 TT REOD LL - ONE DO FLY COD - ROON FV ENDY VOID - FAND, ONE TO - FY SOD FV ENDY VOID - FY FOR FY ENDY VOID - FY FOR FY ENDY VOID - FY FOR FY FOR FY FOR FY FOR FY ENDY VOID - FY FOR FY	SH2-8/1-80	WILAFISR	· · · · · TEVPLLLLEI - SPA	ARGIYLVRKSS T	LGD YTVTVRDDG	RVKHFQ IC FKEDLKTP	GYIIEGPT FCTINDLIDHC
GOSDAR WIHSAITE DAVAMIRO POGENVERDITES VTLSAVFRAL VOILPWIRINELEE VVVETTLT FESIDOICTIN GOSDAR WIHSAITE DAVAMIRO POGENVERDITES VTLSAVFRAL VOILPWIRINELEE VVVETTLT FESIDOICTIN GOSDAR WIHSAITE DAVAMIRO POGENVERDITES FESIDOICTIN VVETTLT FESIDOICTIN GOSDAR WIHSAITE DAVAMIRO POGENVERDITES FESIDOICTIN FESIDOICTIN VVETTLT FESIDOICTIN GOSDAR WIHSAITE DAVENUE FESISAFET FILSVVEYDDA ELSV VEDAR ELSVVENDA VVETTLT FESIDOICTIN GOSDAR WIHSAITE TAIA BERAGON TAI O GENDOICTIN DEL STAFE FSTES SOLE SVENTLANCKY PRONO VVETTLE FESISAFET GOSDAR WINGKISGIT CANAGARA ERODIFINIO DA TRIODALIA ASUTOSON VVENTLANCKY PRONO VVETTLE FESISAFET GOSDAR VINGKISGIT CANAGARA ERODIFINIO DA TRIODALIA FESISAFET SVANTVENNO VVENNO VVETTLE FESISAFET GOSDAR VINGKISGIT CANAGARA ERODIFINIO DA TRIODALIA	SH2-6/1-81	WY FGQ ITG	EAEELIOKP- EGE	RNG (FLVRT SR T	DGE FALSVHNDGV	LTHPDRKHFRI EANDG	CYFIAEESS HCSFKOLIGLY
903020-1 YIMPR'U'N - ERYESLO - POPEL ESIS FREE - ISJV0000 - VUWRAG VONN - VTAROGKE - PATLONLOW 903028 WOMDISG - DDAEEL GOP RAPPGELV K K K 5 F. 1 903028 WOMDISG - VONN - VTAROGKE - PATLONLOW 903028 L'HOFANA - TALABA (ON - THIDILV SE SOE - LALUNCS - SVM - N - TARON - VU'NS - F. 57 LSDV00 903028 L'HOFANA - TALABA (ON - THIDILV SE SOE - LALUNCS - SVM - N - TARON - VU'NS - F. 57 LSDV00 903028 WINFFITW - ERSELVE - SSOE - LALUNCS - SVM - N - TARON - VU'NS - F. 57 LSDV00 903028 WINFFITW - ERSELVE - SSOE - LALUNCS - SVM - N - TARON - VU'NS - F. 57 LSDV00 903028 WINFFITW - ERSELVE - SSOE - LALUNCS - SVM - N - TARON - VU'NS - F. 57 LSDV00 903028 WINFFITW - ERSELVE - SSOE - TALESCOE - VU'NS - VU'N	SH2-5/1-78	WYHPAISR	STREQQLLK GNI	EEGSFLVRK SDP · F	KGN FVLTRKVGSPE	MANSCHKHYKV'RNGTK	- YY SDGK SLAEMIRLC
Space Workin So DDD AR UDD - AVP SO FLV EKK - KP SF. F L 2VK VDDA. E ST VHR N TDAKO. VT L 10PU-10D T E LOV VD Space Space <t< td=""><td>SH2-15/1-76</td><td>WIHSAITR</td><td> DAVRMLRD</td><td>VG (FVVRFSDT-S</td><td>PGE YTLSVVFNA</td><td> VOILNPVMINRLEEK</td><td>IYYVFTRET FESLDDIKTHH</td></t<>	SH2-15/1-76	WIHSAITR	DAVRMLRD	VG (FVVRFSDT-S	PGE YTLSVVFNA	VOILNPVMINRLEEK	IYYVFTRET FESLDDIKTHH
SP32DAP LFMGFANB TALABAR, OUT	SH2-20/1-74	YYHRFLYR	EEAYESLLG	PODFLLRESIS- K	PLE ISLSVMDDG	KVIWYRKCEVDNR	TYTRFGRKK FRTLOYLIGHF
Space W Work void T K NUK KATO, NO GRADD F IV DOAT. FNOD. I A FOLTODO. Ret E VINCK FMDOD. Y V EMADE. FV TO LE E VINCK Space Space <td< td=""><td>SH2-1/1-83</td><td>WGHGN I SG</td><td> DDA EEILQDP - RV</td><td>SGEFLVREAK K</td><td>PSF FILPVKYDDR</td><td>- ELSTVKHFKVFTDANG</td><td>CYYLTLGPOV- CLDEITELVOYY</td></td<>	SH2-1/1-83	WGHGN I SG	DDA EEILQDP - RV	SGEFLVREAK K	PSF FILPVKYDDR	- ELSTVKHFKVFTDANG	CYYLTLGPOV- CLDEITELVOYY
943777 WINKFITW - KEBECIMOR-BORDERVEESSOHPAA - FSISVEEG - SVENOVUVUVUVUVUVUVUVUVUVUVUVUVUVUVUVUVUVUVU	SH2-10/1-74	LFHGFANR	TAIAEARLON TI	AYG GYLVRESE S	PGE IALSLWHCS	SVKW- R 1 TNENG	NLVIYS-LFFSTLSOFVYHY
992100 FFADDLOB LSSR.AT.ARPODFLVLEDN:STDD ITVSVVDNQCKRPZVDNQC KRPZVDNQC 9924070 LYSKVST	SH2-2/1-86	WFWGKVSGRT	KGNSKAETQLND GGI	RDGSFIVRDSAT - R	PGD IAFSLRTDGD	- RGEEVNHCKV PMDNG	KYYVEMNDR FNTIQELIEVY
904374 LYSGYUST. AYVENLKY. TG FLV EDS SEGS. FTLSYAYGS. COORD. WILDSBR. HOSLEV WI 903374 WADDITR. ELVENSWICH. EKTOPLL. OGE. APGS. VYLYNLDS VVLKHLI KONC. YYNTDR FSLLWAD 9034874 WHOEISANGPCI EDYPFEKERRILD. NKOGIYLYN EFT EEGO. YTLTUYTN. MHWIIGFSTG. YYCTGA. COLVSYN 9044977 WI FALDR. KARELLEN. SOCIYLYN EFT EEGO. ATLTUYTN. MHWIIGFSTG. YYCTGA. COLVSYN	SH2-17/1-77	WEMKETTW	KEAEECLMDR- EQE	RDG FVIRESSO - H	PNA FSI SVR EFG	SVGHIVVEYDNRG	IIIITDNTVNCHLGELIHFY
9030374 WFA0DITR	SH2-11/1-80	FFAGDLGK	· LASYRLAT ARI	PPGFFLVRLSDN- S	TGD ITV SVV DWGQ	KRNPKVKQYLILEECNG	VFGIGREY FDEPQALVHGY
94236240 WFHGEISR & GPCIEDKPPEAEDRLLP···NKOG YLVEKRET-EEGO···YTLTLVTKN·····NHSHVIIGFSETG···YFCTGK·····LODLVSHY 94290-77 WYIPALDR·······KQAEELLLYS-GOHOG)LIVERSEH-EQGH···FALSVRSGSP·····RVKHIVISDEHR····FIRNGGET··FSSLEELVEVD	SH2-4/1-74	LY SGKV ST	AYVEMLLKT	TGIFLVRESDS- S	EGS FTLSVRYQS	EVQHYIIDKQDGG	YMLDRSRR HGSLLEIVNHY
SH291-77 WY I PALDR	SH2-3/1-74	WFAGDITR	ELVENSLML EI	TOPFLLROSE A	PGS YVLYWLDIS	VVKHYLIENEONC	YYMTTGIRFSSLPLLVMDY
	SH2-16/1-80	WFHGEISROGPC	I EDKPPEAEDRLLP NI	QGIYLVRKRET - E	EGQ YTLTLVTKN	· · · · NH SHVIIGFSETG. · ·	YFCTGK LODLVSHY
SH213/181 WF SGQ VTR QDAAT LLQS- GG E GS FLV RESDS- HQ GV FSLSVLEQRD SKKSK VHHILVC SAED OVLISERKK FDGLFDLITHY	SH2-9/1-77	WY I PALDR	KQAEELLLYS- GQI	HOGOLIVRPSEH- E	OGH FALSVRSGSP	RVKHIVICSDEHR	- IRNGGET FSSLEELVEVD
	SH2-13/1-81	WFSGQVTR	QDAATLLQS GGI	EEGSFLVRESDS-H	QGV FSLSVLEQRD	SKKSKVHHILVC SAED	OVLISERKK FDGLFDLITHY

model highly conserved columns vs columns of low conservation

	alpha-helix	beta-strand	beta-strand	beta-strand	alpha-helix
	10 20	30 . 0	50 . 60	70 80	90 100
SH2-7/1-77	WFHGELER GESERLLMM	EVQEGIFLIEKSDAMY	GCYTLSHSENSV	R F K E I I S K MQ R M	SVCAE- SK HILLNEIVWVY
SH2-19/1-78	WYYGFIKR NEAEGLUMN I	DKEDGAYLVRSSRS-DI	GE I SL SVR FDD	EI HHFRICTLTKG	VIMKAN LOON FSDLPOLVYHY
SH2-14/1-75	WIDGKILR KEAEKYLSE	GKDGIFLVRDSD KF	GE ISLALHEEK	MITPFILHRNDDD N	YYRGEGET FPAISELIMYY
SH2-12/1-92					YFLKEEAKLQHLGQLIEYY
SH2-18/1-83					YYVILNIEFDTLADLISYF
SH2-8/1-80	WILAFISR TEVPLLLLEI-	SPARGIYLVRKSS TI	GDYTVTVRDDG	RVKHFQICFKEDLKTPC	GYIIEGPTFCTINDLIDHC
SH2-6/1-81			GE FALSVHNDGV L		YFIAEESS HCSFKQLIGLY
SH2-5/1-78					YYSDGK SLAEMIRLC
SH2-15/1-76					YYVFTRETFESLDDIKTHH
SH2-20/1-74	YYHRFLYR EEAYESLLG	PODFLLRESIS- KR	LEISLSVMDDG	KVIWYRKOEVDNR 1	YTRFGRKKFRTLOYLIGHF
SH2-1/1-83					YYLTLGPOV- CLDEITELVOYY
SH2-10/1-74	LFHGFANR TAIAEARLON				
SH2-2/1-86	WFWGKVSGETKGNSKAETQLND	GGRDGSFIVEDSAT-R	GD IAFSLRTDGD	RGEEVNHCKV PMDNG K	YYVEMNDR FNTIQELIEVY
SH2-17/1-77	WFMKFITWKEAEECLMDR-	EQRDG FVIRESQ-H	NA FSI SVREFG	SVGH PVVFYDNRG	IIITDNTVNCHLGELIHFY
SH2-11/1-80	FFAGDLGK LASYRLAT				
SH2-4/1-74	LY SGKV ST AYVEMLLKT	TGTFLVRESDS- SI	GS FTLSVRYQS	EVQHY I DKQDGG K	YMLDRSRRHGSLLEIVNHY
SH2-3/1-74	WFAGDITR ELVENSUML	EKTOPFLLROSE AR	GS YVLYWLDIS	VVKHYLL KNEQNC	YYMTTON R FSSLPLLVMDY
SH2-16/1-80					Y FCTGK LODLVSHY
SH2-9/1-77				RVKHIVIC SDEHR	
SH2-13/1-81	WFSGQVTR QDAATLLQS	3 G E E G S F L V R E S D S - HO	GVFSLSVLEQRDS	KKSKVHHILVC SAED 0	VLISERKK · · · FDGLFDLITHY


model deletions


model highly conserved columns vs columns of low conservation

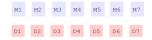
	alpha-helix	beta-strand	beta-strand	beta-strand	alpha-helix
	10 20 30		50 60	70 80	90 100
SH2-7/1-77	WFHGELER GESERLLMM EV	REGIFLINKSDAM	PGC YTLSHSENSV	R F K E I I I S K MQ R M 4	SVCAE- SK HILLNEIVWVY
SH2-19/1-78	WYYGFIKR NEAEGLLMN DK	EDGAYLVRSSRS-I	DVGE ISLSVRFDD	EI HHFRICTLTKG	VIMKA LGDN FSDLPOLVYHY
SH2-14/1-75	WIDGKILR KEAEKYLSE G	KDGTFLVRDSDI	PGE ISLALHEEK	MITPFIIHRNDDD N	YRGEGET FPAISELIMYY
SH2-12/1-92			PADGMSEYALAVRHNEP EQNS		
SH2-18/1-83	WFHGY ITGY GNEAEYQ LVP G	KKGOFLVADSSR-0	EDD FTLSVVFNDTP	NGEQIKHYHINFLAAF dy	YVILNE FOT LADLI SYH
SH2-8/1-80	WILAFISR TEVPLLLLEI- SP	ARGIYLVRK SS	LGDYTVTVRDDG	RVKHFQIC FKEDLKTPC	SYILEGPT FCTINDLIDHC
SH2-6/1-81	WY FGQ ITG EAEELIQKP- EG	RNG (FLVRTSR1	TDGE FALSVHNDGV L	THPDRKHFRI EANDG O	FIAEESS HCSFKQLIGLY
SH2-5/1-78	WYHPAISR STREQQLLK GN				
SH2-15/1-76	WIHSAITR DAVRMLRD	PVG (FVVRFSDT-	SPGEYTLSVVFNA	- VOILNPVMINRLEEK IN	YVFTRET FESLDDIKTHH
SH2-20/1-74	YYHRFLYR EEAYESLLG	POPFLLRESIS-	PLE ISLSVMDDG	KVIWYRKCEVDNR 1	TRFGRKKFRTLOYLIGHF
SH2-1/1-83	WGHGNISG DDAEEILQDP-RV	PSG(FLVREAKI	PSF FILPVKYDDR	ELSTVKHFKVETDANG O	YLTLGPOV- CLDEITELVOYY
SH2-10/1-74	LFHGFANR TAIAEARLON T	MYG JYLVRESE:	SPGE IALSLWHCS	SVKW- RITTNENG N	VIYS-LFFSTLSQFVYHY
SH2-2/1-86	WFWGKVSGET KGNSKAETQLND GG	R DG SFIVRDSAT - I	PGD IAFSLRTDGD	RGEEVNHCKV PMDNGK	YVEMNDR FNTIGELIEVY
SH2-17/1-77	WFMKFITW KEAEECLMDR- EQ	RDG_FVIRESSO-I	PNA FSI SVREFG	SVGH PYVEYDNRG	IIITDNTVNCHLGELIHFY
SH2-11/1-80	FFAGDLGK LASYRLAT AR	PPGFFLVRLSDN- 1	STGD ITV SVV DWGQK	RNPKVKQYLILEECNG4	FGIGREY FDEPQALVHGY
SH2-4/1-74	LYSGKVST AYVEMLLKT	TGIFLVRESDS- :	SEGS FTLSVRYQS	EVOHY IN DKODGG	MLDRSRR HGSLLEIVNHY
SH2-3/1-74	WFAGDITR ELVENSUML E	KTODFLLROSE	POS YVLYWLDIS	VVKHYLLENEONC	YMTTGIR FSSLPLLVMDY
SH2-16/1-80	WFHGE ISROGPCIEDKPPEAEDRLLPN	KQGIYLVRKRET-I	EEGQ YTLTLVTKN	NHSHVI GFSETG	FCTGK LQDLVSHY
SH2-9/1-77	WY I PALDR KQAEELLLY S- GQ	HOGOLIVRPSEH-	EQGH FALSVR SGSP	RVKHIVIC SDEHR	IRNGGET FSSLEELVEVC
SH2-13/1-81	WFSGQVTR QDAATLLQS GG	EEGSFLVRESDS-I	IQ GV FSLSVLEQRD S	KKSKVHHILVO SAED ON	LISERKK FDGLFDLITHY
		and the second s			

model insertions

model deletions

Build profiles: a pet example

A STAMPV A T S LMVT S S S LMLT A T P AMSS A T A L L SA A T A L L SA

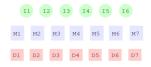

- Sequence weighting: correct sampling bias.
- Residue counts: get the frequency of each residue at each position of the MSA.
- ➢ Pseudo-counts: avoid frequencies of 0 ⇒ avoid exclusion of residues.
- Build the final scoring matrix: used to build and score alignments.

	1	2	3	4	5	6	7
A	-16	-4	6	10	-4	-4	6
С	-4	-4	-4	-4	-4	-4	-4
D	-4	-4	-4	-4	-4	-4	-4
E	- 4	- 4	- 4	- 4	-4	-4	-4
F	-4	-4	-4	-4	-4	-4	-4
G	-4	-4	-4	-4	- 4	-4	-4
Н	-4	- 4	-4	-4	- 4	-4	-4
I	-4	-4	-4	-4	-4	-4	-4
K	-4	-4	-4	-4	-4	-4	-4
L	-4	- 4	-4	13	6	6	-4
М	-4	-4	-4	-4	16	-4	-4
N	-4	-4	-4	-4	-4	-4	-4
Р	-4	- 4	6	-4	- 4	6	-4
Q	-4	-4	-4	-4	-4	-4	-4
R	-4	-4	-4	-4	-4	-4	-4
S	6	10	10	-4	- 4	10	6
т	-4	13	6	-4	-4	-4	10
V	-4	-4	-4	-4	-4	6	6
W	- 4	- 4	- 4	- 4	-4	-4	-4
Y	-4	-4	-4	-4	-4	-4	-4

A	-16	- 4	6	10	- 4	-4	6
С	-4	- 4	-4	-4	-4	-4	-4
D	-4	-4	-4	-4	-4	-4	-4
E	-4	- 4	- 4	- 4	- 4	-4	- 4
F	-4	-4	-4	-4	-4	-4	-4
G	-4	-4	-4	-4	-4	-4	-4
Н	-4	- 4	- 4	- 4	- 4	-4	- 4
I	-4	-4	-4	-4	-4	-4	-4
K	-4	-4	-4	-4	-4	-4	-4
L	-4	- 4	- 4	13	6	6	- 4
М	-4	-4	-4	-4	16	-4	-4
N	-4	-4	-4	-4	-4	-4	-4
P	-4	-4	6	-4	-4	6	-4
Q	-4	-4	-4	-4	-4	-4	-4
R	-4	-4	-4	-4	-4	-4	-4
S	6	10	10	-4	-4	10	6
т	-4	13	6	-4	-4	-4	10
V	-4	-4	-4	-4	-4	6	6
W	- 4	- 4	- 4	-4	- 4	-4	-4
Y	-4	-4	-4	-4	-4	-4	-4

M1	M2	мз	М4	М5	м6	Μ7	

A	-16	- 4	6	10	- 4	- 4	6
С	-4	- 4	-4	-4	-4	-4	-4
D	-4	-4	-4	-4	-4	-4	-4
E	- 4	- 4	- 4	- 4	- 4	- 4	- 4
F	-4	- 4	-4	- 4	-4	-4	-4
G	-4	-4	-4	-4	-4	-4	- 4
H	-4	- 4	-4	- 4	-4	-4	- 4
I	-4	- 4	-4	- 4	-4	-4	-4
K	-4	-4	-4	-4	-4	-4	-4
L	-4	- 4	-4	13	6	6	- 4
М	-4	- 4	-4	- 4	16	-4	-4
N	-4	- 4	-4	-4	-4	-4	-4
P	-4	- 4	6	- 4	-4	6	- 4
Q	-4	- 4	-4	- 4	-4	-4	-4
R	-4	-4	-4	-4	-4	-4	-4
S	6	10	10	- 4	-4	10	6
Т	-4	13	6	- 4	-4	-4	10
V	-4	- 4	-4	-4	-4	6	6
W	-4	- 4	-4	- 4	-4	-4	- 4
Y	-4	- 4	-4	-4	-4	-4	-4



A	-16	- 4	6	10	- 4	- 4	6
С	-4	- 4	-4	-4	-4	- 4	- 4
D	-4	-4	-4	-4	-4	-4	-4
E	-4	- 4	-4	- 4	- 4	- 4	- 4
F	-4	- 4	-4	-4	-4	-4	-4
G	-4	-4	-4	-4	-4	-4	- 4
H	-4	- 4	-4	- 4	- 4	-4	- 4
I	-4	- 4	-4	-4	-4	-4	-4
K	-4	-4	-4	-4	-4	-4	-4
L	-4	- 4	-4	13	6	6	- 4
М	-4	- 4	-4	-4	16	-4	-4
N	-4	-4	-4	-4	-4	-4	-4
P	-4	- 4	6	- 4	- 4	6	- 4
Q	-4	- 4	-4	-4	-4	-4	-4
R	-4	-4	-4	-4	-4	-4	-4
S	6	10	10	- 4	- 4	10	6
Т	-4	13	6	-4	-4	-4	10
V	-4	-4	-4	-4	-4	6	6
W	-4	- 4	-4	- 4	- 4	-4	- 4
Y	-4	- 4	-4	- 4	-4	-4	-4
Del	-d1	-d2	-d3	-d4	-d5	-d6	-d7

November 14

Protein Bioinformatics: Sequence-Structure-Function

2018 Basel

-i1 -i2 -i3 -i4 -i5 -i6

A	-16	- 4	6	10	- 4	-4	6
С	-4	-4	-4	-4	-4	-4	-4
D	-4	-4	-4	-4	-4	-4	-4
E	-4	- 4	-4	- 4	- 4	-4	- 4
F	-4	-4	-4	-4	-4	-4	-4
G	-4	-4	-4	-4	-4	-4	-4
H	-4	- 4	-4	-4	- 4	-4	- 4
I	-4	-4	-4	-4	-4	-4	-4
K	-4	-4	-4	-4	-4	-4	-4
L	-4	- 4	-4	13	6	6	- 4
М	-4	-4	-4	-4	16	-4	-4
N	-4	-4	-4	-4	-4	-4	-4
P	-4	- 4	6	-4	- 4	6	- 4
Q	-4	-4	-4	-4	-4	-4	-4
R	-4	-4	-4	-4	-4	-4	-4
S	6	10	10	- 4	- 4	10	6
т	-4	13	6	-4	-4	-4	10
V	-4	-4	-4	-4	-4	6	6
W	-4	- 4	-4	- 4	- 4	-4	- 4
Y	-4	-4	-4	-4	-4	-4	-4
Del	-d1	-d2	-d3	-d4	-d5	-d6	-d7

November 14

Protein Bioinformatics: Sequence-Structure-Function

2018 Basel

-i1 -i2 -i3 -i4 -i5 -i6

A	-16	- 4	6	10	- 4	-4	6
С	-4	- 4	-4	-4	-4	-4	-4
D	-4	-4	-4	-4	-4	-4	-4
E	-4	- 4	- 4	- 4	- 4	-4	- 4
F	-4	- 4	-4	-4	-4	-4	-4
G	-4	-4	-4	-4	-4	-4	- 4
H	-4	- 4	-4	- 4	-4	-4	- 4
I	-4	- 4	-4	-4	-4	-4	-4
K	-4	- 4	-4	-4	-4	-4	-4
L	-4	- 4	-4	13	6	6	- 4
М	-4	- 4	-4	-4	16	-4	-4
N	-4	- 4	-4	-4	-4	-4	-4
P	-4	- 4	6	- 4	-4	6	- 4
Q	-4	- 4	-4	-4	-4	-4	-4
R	-4	- 4	-4	-4	-4	-4	-4
S	6	10	10	- 4	-4	10	6
т	-4	13	6	-4	-4	-4	10
V	-4	- 4	-4	-4	-4	6	6
W	-4	- 4	-4	- 4	-4	-4	- 4
Y	-4	- 4	-4	-4	-4	-4	-4
Del	-d1	-d2	-d3	-d4	-d5	-d6	-d7

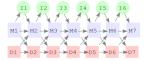
November 14

Protein Bioinformatics: Sequence-Structure-Function

I1 I2 I3 I4 I5 I6

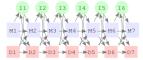
M1 -	ð	М2	-	МЗ	-	M4 -	>	М5		M6	2	Μ7
	X		X		X		X		X		X	
Dl		D2		D3		D4		D5		D6		D7

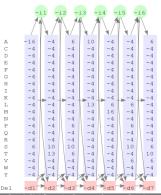
-i1 -i2 -i3 -i4 -i5 -i6

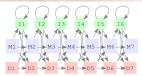

A	-16	- 4	6	10	- 4	- 4	6
С	-4	- 4	-4	-4	-4	-4	-4
D	-4	-4	-4	-4	-4	-4	-4
E	-4	- 4	- 4	- 4	- 4	- 4	- 4
F	-4	- 4	-4	-4	-4	-4	-4
G	-4	-4	-4	-4	-4	-4	-4
Н	-4	- 4	- 4	- 4	- 4	- 4	- 4
I	-4	-4	-4	-4	-4	-4	-4
K	-4	-4	-4	-4	-4	-4	-4
L	-4	- 4	- 4	13	6	6	- 4
М	-4	-4	-4	-4	16	-4	-4
N	-4	-4	-4	-4	-4	-4	-4
P	-4	- 4	6	- 4	- 4	6	- 4
Q	-4	-4	-4	-4	-4	-4	-4
R	-4	-4	-4	-4	-4	-4	-4
S	6	10	10	- 4	- 4	10	6
т	-4	13	6	-4	-4	-4	10
V	-4	-4	-4	-4	-4	6	6
W	-4	- 4	- 4	- 4	- 4	- 4	- 4
Y	-4	-4	-4	-4	X -4	-4	X -4
				1		1	-
el	-d1	-d2	-d3	-d4	-d5	-d6	-d7

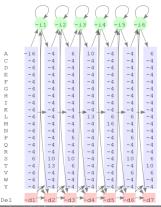
I1 I2 I3 I4 I5 I6

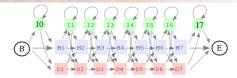
M1 -> M2		1	1.1	5 🔶 М	6 🔶 M7
X	X	X	X	X	X
D1 -> D2	→D3	→D4	-D5	5 -> D	6 -> D7

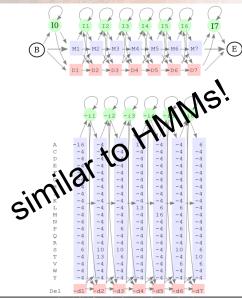

-i1 -i2 -i3 -i4 -i5 -i6


$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4
F -4 -4 -4 -4 -4 -4 G -4 -4 -4 -4 -4	-4
G -4 -4 -4 -4 -4 -4	-4
	-4
	-4
H -4 -4 -4 -4 -4 -4	-4
I -4 -4 -4 -4 -4 -4	-4
K -4 -4 -4 -4 -4 -4	-4
L -4 -4 -4 13 6 6	-4
M -4 -4 -4 -4 16 -4	-4
N -4 -4 -4 -4 -4 -4	-4
P -4 -4 6 -4 -4 6	-4
Q -4 -4 -4 -4 -4 -4	-4
R -4 -4 -4 -4 -4 -4	-4
S 6 10 10 -4 -4 10	6
T -4 13 6 -4 -4 -4	10
V -4 -4 -4 -4 6	6
W -4 -4 -4 -4 -4 -4	-4
Y -4 🗶 -4 🗶 -4 🗶 -4 🗶 -4 🗶 -4	-4
el _d1 -d2 -d3 -d4 -d5 -d6	- 47




	-	i1 -i	.2 -i	13 -i	4 -i	5 -i	6
	1	\mathbf{V}	\mathbf{V}		\mathbf{V}	\mathbf{V}	
4	-16	- 4	6	10	- 4	-4	6
2	-4	- 4	-4	-4	-4	-4	-4
>	-4	-4	-4	-4	-4	-4	-4
E	-4	- 4	- 4	- 4	- 4	- 4	- 4
2	-4	- 4	-4	-4	-4	-4	-4
3	-4	-4	-4	-4	-4	-4	-4
-	-4	- 4	- 4	- 4	- 4	- 4	- 4
E	-4	- 4	-4	-4	-4	-4	-4
< C	-4	- 4	-4	-4	-4	-4	-4
L.	-4	- 4	-4	13	6	6	- 4
1	-4	- 4	-4	-4	16	-4	-4
a l	-4	- 4	-4	-4	-4	-4	-4
2	-4	- 4	6	- 4	- 4	6	- 4
2	-4	- 4	-4	-4	-4	-4	-4
R	-4	- 4	-4	-4	-4	-4	-4
3	6	10	10	- 4	- 4	10	6
F	-4	13	6	-4	-4	-4	10
7	-4	- 4	-4	-4	-4	6	6
J	-4	- 4	-4	- 4	- 4	-4	- 4
(-4	x -4 >	-4 >	x - 4 ×	-4 ×	-4 ×	-4
el	-d1	-d2	-d3-	-d4	-d5	-d6	-d7


Protein Bioinformatics: Sequence-Structure-Function

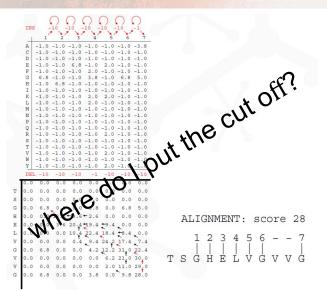


Profile	YLVDWDEFKSDIYCSCRSFE <mark>y</mark> KGYLCRHAIVVLQMSG	(2(\mathcal{T}	\mathcal{T}	\mathcal{T}	\mathcal{T}	\mathbf{P}
Séquence	YTVQIDLDDDEXEXSCSCPXFE-HGXPCKHILAVLLALN		- 1 1		i2 -	i3 -	i 4 -	i5 -	16
						AL A	NV A		N/
			1	/*	\wedge	1\ /	1\/	\wedge	
		/		₹/	₹/	14/	1/	14/	×
	A	-16		-4	6	10	- 4	-4	6
	С	-4		-4	-4	- 4	-4	-4	-4
	D	-4		-4	-4	-4	- 4	-4	- 4
	E	-4		-4	-4	-4	- 4	-4	- 4
	F	-4		-4	-4	-4	-4	-4	-4
	G	-4		-4	-4	-4	- 4	-4	-4
	Н	-4		-4	- 4	- 4	- 4	- 4	- 4
	I	-4		-4	-4	-4	-4	-4	-4
	K	-4	┢	-4	-4	-4-	-4	-4	-4
	L	-4		-4	- 4	13	6	6	- 4
	M	-4	Λ.	-4	-4	- 4	16	-4	-4
	N	-4		-4	-4	-4	-4	-4	-4
	P	-4		-4	6	- 4	- 4	6	- 4
	Q	-4		-4	-4	-4	-4	-4	-4
	R	-4		-4	-4	-4	-4	-4	-4
	S	6		10	10	- 4	-4	10	6
	Т	-4		13	6	-4	-4	-4	10
	V	-4		-4	-4	-4	-4	6	6
	W	-4		-4	-4	-4	-4	-4	-4
	Y	-4	X	-4	-4	-4	-4	-4	-4
	Del	-d1		-d2	-d3	-d4	-d5	-d6	-d7

November 14

Protein Bioinformatics: Sequence-Structure-Function

Search sequences with generalized profiles with dynamic programming

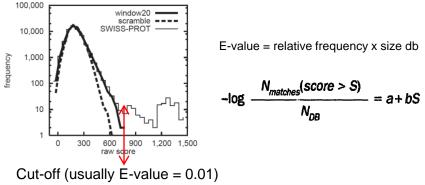

Profiles: search and align with dynamic programming

	INS		10	.10	10	10	10	-1	
	1	1	2	3	4	5	6	7	
	A	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-3.8	-
	C		-1.0		-1.0	-1.0	-1.0	-1.0	
	D		-1.0		-1.0	-1.0	-1.0		
	E			6.8		2.0		-1.0	
	F		-1.0		2.0	-1.0	-1.0		
	GH		-1.0		3.8	-1.0	6.8	5.0	
	I		-1.0		-1.0	-1.0		-1.0	
	K	-1.0	-1.0		2.0	2.0		-1.0	
	L		-1.0		2.0	-1.0	-1.0		
	M		-1.0		-1.0	-1.0		-1.0	
	N	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
	P		-1.0			-1.0	-1.0	-1.0	
	2		-1.0		-1.0	-1.0		-1.0	
	R		-1.0		-1.0	2.0		-1.0	
	S		-1.0		-1.0	-1.0		-1.0	
	v	-1.0	-1.0		-1.0	-1.0		-1.0	
	W		-1.0		-1.0	-1.0	-1.0	-1.0	
	Y		-1.0		-1.0			-1.0	
	1	-10		-10	-1	-10	-10		1
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
т	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
G	0.0	6.8			3.8			5.0	
H	0.0	0.0		+ 3.6		0.0	0.0	0.0	
Е	0.0	0.0	3.6	20.4	19.4	+9.4	.0.0	0.0	
L	0.0	0.0	0.0	10.4	22.4	18.4	+8.4	.0.0	
V	0.0	0.0	0.0	0.4	9.4			7.4	
G	0.0	6.8	0.0	0.0	4.2	12.2	31,0	22.4	
V	0.0	0.0	0.0	0.0	0.0	6.2	21 t 0	30.0	
v	0.0	0.0	0.0	0.0	0.0	2.0	11.0	29.0	
G	0.0	6.8	0.0	0.0	3.8	0.0	9.8	28.0	

Dynamic programming is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions ideally, using a memory-based data structure.

ALIGNMENT: score 28 1 2 3 4 5 6 - - 7 | | | | | | | S G H E L V G V V G

Profiles: search and align with dynamic programming


Calibration and Determination of the Cut-off I

The profile is scanned against a randomized database of proteins (Swiss-Prot 34 reversed or shuffled) to calibrate the profile and to deduce the cut-off value.

(Look at the distribution of scores on a randomized database).

The raw score is normalized to facilitate comparisons between results.

(Normalized scores of different profiles can be compared)

PROSITE profiles use normalized scores

PROSITE profiles don't use directly E-values, but normalized scores, which are a linear transformation of the raw score

$$N_{\text{score}} = R_1 + R_2 \times \text{Score}$$

Where R_1 and R_2 are 2 parameters characterizing the right tail of the EVD.

The N_{score} and the E-value are related by the following relationship

$$E(A) = A \times 10^{-N_{score}}$$

where A is the number of residues in the searched database.
For example, for a database containing 10⁷ residues, a normalized score of 9.0 corresponds to an E-value of 0.01.

Pagni, M and Jongeneel, CV (2001) Briefings in Bioinformatics, 2, 51-67.

PROSITE and HAMAP generalized profiles: Example

Home ScanProsite ProRule Documents Downloads Links Funding

	General information about the entry
Entry name	FHA_DOMAIN
Accession number	P\$50006
Entry type	MATRIX
Date	NOV-1995 (CREATED); NOV-1995 (DATA UPDATE); JAN-2013 (INFO UPDATE).
PROSITE Documentation	PD0C50006
Associated ProRule	PRU00086
	Name and characterization of the entry
Description	Forkhead-associated (FHA) domain profile.
Matrix / Profile	/CBANK_UPEC: AFMEET-MECTEMPLEMPORTHWY:: LEATH-53; TOFOLOFH-LINER; /USIONI: DEMITIDMENTER:: Node, KDAN; ANSWLIZATION: MUCEI:: ENATIONE LINER, HIG.MET3; REG.0(187; TEXT='Loge'; COLUMN:: MUCEI:: ENATIONE LINER:: HIG.MET3; REG.0(187; TEXT='Loge'; COLUMN:: ENATION:: NOTE:: COLUMN:: HIGH:: HIGH:: HIGH:: HIGH:: /OUTUM:: LEAL-MESTACHED:: NOTE:: COLUMN:: TEXT=''; /OUTUM:: LEAL-MESTACHED:: NOTE:: COLUMN:: TEXT='';
Defaults values —	■● FALT: B1=-50; E1=-50; H1=-105; H0=-105; IH=-105; IH=-105; IH=-20; D=-20; A B C D E F G H I K L M N P Q R S T V V Y Z (1: B1=06; H0=-105; H0=-105;
Match state —	1/2; (2)*** (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
mplicit insertion — from defaults)	(Pt SY=R); H=-19, -6, -30, -6, 1, -21, -20, -5, -30, 22, -21, -9, 1, -19, 10, -22, -10, -11, -21, -21, -6, 1; Ht SY=W1; H= -5, -4, -23, -2, -6, -16, -7, 1, -15, -3, -21, -12, 15, -10, -3, -2, 4, -3, -16, -27, -9, -7; Ht SY=CS; H= -3, -1, -16, -2, -16, -4, -14, -12, -3, -17, -12, -1, -3, -4, -3, -16, -27, -9, -7;
Explicit insertion — Explicit deletion —	/M: SY**0'; M=-6, 16, 25, 24, 17, 29, -12, -7, -28, 3, -26, -21, 6, 1, 2, -6, 7, 1, -22, -34, -19, 9; M=-12; M0=-12; M=-12; I=-4; M: -5P+M ² _2; M=-6, I, 17, 0, 3, -16, -5, -2, -14, 4, -13, -8, 6, -6, 6, 7, 1, -4, -15, -19, -11, 4;
Implicit deletion(from defaults)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

November 14

Summary about patterns and profiles

Patterns

- model a multiple sequence alignment using a compact string
- suited to model short and well conserved motifs
- good to describe functional residues
- easy to build, but not producing a score
- Profiles
 - model a multiple sequence alignment using a numerical matrix representing the position specific distribution of the residues
 - suited to model protein domains and gapped motifs
 - excellent technology to detect distant homologies
 - matches produce a score that can be interpreted using statistical methods
- Profiles and pattern can be used together (rules) to produce precise annotation

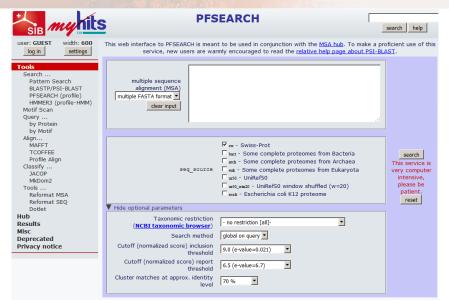
Databases

Family and domain identification tools and databases

General definition: a given pattern or PSSM/profile specific for a domain is called a descriptor, descriptor motif, discriminator or predictor.

- > Domain databases: PROSITE, Pfam, SMART, ProDom
- Family databases: HAMAP, PRINTS, PANTHER, PIRSF, TIGRFAM
- > Structural databases: SCOP, CATH
- Integrated databases: CDD, InterPro
- PSI-BLAST

Tips and tricks


Validate your results

Evaluate the score of the match

As for wet lab results cross-validate your results with other methods:

- Use an integrated database (InterPro or CDD): matches with different methods are likely to be true hits
- Perform a Blast with the matched region: matched sequences should contain the same motif
- Build a pattern (ScanProsite), generalized profile (MyHits) or HMM (MyHits) with the matched region: matched sequences should contain the same motif
- Look for additional information provided by the database: features like active or binding sites, PTMs or disulfides and read the documentation describing the motif

MyHits: Build your own profile...

MyHits: ...or HMM

SiB mynits	HMMER3	
user: GUEST width: 600 log in settings	This form lets you build a HMMER3 profile-HMM from a multiple sequence alignment (MSA), and search the database protein sequences with it. The <u>HMMER3</u> package was written by Sean Eddy. Only those options that are most useful to build a profile from an are available below.	
Search Pattern Search BLASTP/PSI-BLAST PFSEARCH (profile) HMMMER3 (profile-HMM) Motif ScaRCH (profile-HMM) Motif Align MAFFT TCOFFEE Profile Align Classify JACOP MkDom2 Tools Reformat MSA Reformat MSA Reformat SEQ Dotlet Hub	multiple sequence alignment (MSA) examples clear input clear input seq_source seq_source was - Some complete proteomes from Bacteria was - Some complete proteomes from Archaea intensive was - Unikef50 was - Unikef50 was - Escherichia coli K12 proteome	uter I, e
Results Misc	Hide optional parameters Taxonomic restriction no restriction [all]-	
Deprecated Privacy notice	E-value inclusion threshold	
	E-value report threshold 1 X Cluster matches at approx. identity level 70 %	
November 14	Protein Bioinformatics: Sequence-Structure-Function 2018 Ba	sel

prorule annotation rule: PRU00274

ProRule

Additional information contained in a rule associated to each PROSITE descriptor increases its discriminatory power (combines advantages from both profiles and patterns).

Acrosins are serine proteases of trypsin-like cleavage specificity.

Haptoglobins have lost active site residues and are therefore no longer catalytically active.

Requires a good profile/sequence alignment to be meaningful.

General rule information (2)				
Accession	PRU00274			
Dates	12-DEC-2003 (Created) 27-FEB-2009 (Last updated, Version 16)			
Data class	Domain			
Predictors	PROSITE; PS50240; TRYPSIN_DOM			
Name	Serine proteases, trypsin domain			
Function	Cleaves preferentially. Arg-J-Xaa, Lys-J-Xaa			

Propagated annotation [7]

Description [?]

case <FTGroup:1> + RecName EC=3.4.21 -:

end case

Comments [?]

Similarity	Belongs to the peptidase S1 family.	
	Contains # peptidase S1 domain.	
Cross-references [7]		
ase <ftgroup:1></ftgroup:1>		
PROSITE	PS00134; TRYPSIN_HIS; 1;	
	PS00135; TRYPSIN_SER; 1;	
osiso		
	PS00134; TRYPSIN_HIS; 0-1;	
	PS00135; TRYPSIN_SER; 0-1;	
and case		

Gene Ontology [7]

```
case <FTGroup:1>
GO:0016787; Molecular function: hydrolase activity.
GO:0008233; Molecular function: peptidase activity.
GO:0004252; Molecular function: serine-type endopeptidase activity.
```

Keywords [?] Hydrolase Protease Serine proteend case

drolase	
otease	
rine protease	
050	
<fttag:disulf> sulfide.bond</fttag:disulf>	
sufide bond	
899	

end case

0850 1

Кеу	From	To	Description	Tag	Condition	FTGroup
DOMAIN	110		Peptidare 31 #			
ACT_SITE	44	42	Charge relay system (By similarity)			1
ACT_SITE	91	91	Charge relay system (By similarity)		Þ	1
ACT_SITE	106	104	Charge relay system (Sy similarity)		5	1
DISULFID	87	40	By similarity	disulf	C-x*-C	
DISULFID	125	192	By dimilarity	disulf	C-x*-C	
DISULFID	156	171	By similarity	disulf	C-x*-C	
DISULFID	102	210	By similarity	disulf	C-X*-C	